ژول هاری پوانکاره (1854-1912) در آغاز قرن بیستم در سطح جهانی به عنوان بزرگترین ریاضیدان نسل
خود شناخته شد. در سال ۱۸۷۹ دوران دانشگاهی خود را در کان آغاز کرد, و تنها دو سال بعد به استادی
دانشگاه سوربن منصوب شد. بقیة عمر خود را در آنجا به سر برد, و هر سال موضوع متفاوتی را تدریس کرد.
در سخنرانیهایش‐ که توسط دانشجویان او ویرایش شد و به چاپ رسید‐ با ابتکار و تسلط فنی فراوان, در
واقع تمامی زمینه های معروف ریاضیات محض و کار بسته, و بسیاری از زمینه هایی را که قبل از کشف
توسط وی ناشناخته بودند, مورد بحث قرار داد. روی هم رفته بیش از ۳۰ کتاب فنی دربارة فیزیک ریاضی ومکانیک سماوی, شش کتاب در سطح عامه فهم, و تقریبًا ۵۰۰مقالة پژوهشی در ریاضیات نوشت. ویمتفکرین سریع الانتقال, قوی, و خستگی ناپذیر بود که به جزئیات نمی پرداخت و به قول یکی از معاصرانش«یک فاتح بود, نه یک استعمارگر». از موهبت حافظة عجیبی نیز برخوردار بود, و برحسب عادت, در حین
قدم زدن در اطاق مطالعة خود در مغزش ب ریاضیات می پرداخت و فقط پس از آنکه آن را در ذهنشتکمیل می کرد, بر روی کاغذ می آورد. بیش از ۳۲ سال نداشت که به عضویت فرهنگستان علوم برگزیدهشد. عضوی از فرهنگستان که او را برای عضویت پیشنهاد کرد گفت که «کارش مافوق تمجید عادی است, ولاجرم آنچه را که یاکوبی دربارة آبل نوشت به یادمان می آورد: او مسایلی حل کرده که قبل از خودش به تصور درنیامده بودند.»
نخستین دستاورد بزرگ ریاضی پوانکاره در آنالیز بود. او ابداع نظریة توابع خود ریخت, مفهوم دوره ای بودنیک تابع را تعمیم داد. توابع مثلثاتی و نمایی مقدماتی, دوره ای یگانه و توابع بیضوی دوره ای دوگانه هستند.
توابع خد ریخت پوانکاره تعمیم گسترده ای از این توابع را تشکیل می دهند, زیرا این توابع تحت یک گروهشمارای نامتنهاهی از تبدیلات کسری خطی, پایا هستند و نظریة غنی توابع بیضوی را به عنوان جزء دربرمیگیرند. او از آنها برای حل معادلات دیفرانسیل خطی با ضرایب جبری استفاده کرد و همچنین نشان داد کهچگونه می توان ار این توابع در یکنواخت کردن منحنیهای جبری, یعنی, بیان مختصات هر نقطة واقع برچنین منحنی برحسب توابع تک مقداری y(t), x(t)c از یک پارامتر واحد t، استفاده کرد. در دهه های
1880 و ۱۸۹۰ میلادی توابع خود ریخت به صورت شاخة گسترده ای از ریاضیات درآمد که (علاوه بر آنالیز)به قلمروهای نظریة گروه ها, نظریة اعداد, هندسة جبری, و هندسة غیراقلیدسی راه یافته است.
نکتة اساسی دیگری از فکر پوانکاره را می توان در پژوهشهایش دربارة مکانیک سماوی یافت (روشهای نوینمکانیک سماوی‐ در سه جلد ۱۸۹۲-۱۸۹۹ ). در خلال این کار نظریة بسطهای مجانبی خود را ارائه کرد ( که باعث توجه به سریهای وارگا شد), پایداری مدارها را مطالعه کرد, و نظریة کیفی معادلات دیفرانسیلغیرخطی را پایه گذاری کرد. بررسیهای مشهورش در بررسی تکامل اجسام سماوی او را به مطالعة اشکال تعادل جرم سیال درحال دورانی که ذراتش به وسیلة جاذبة ثقلی به هم پیوسته است, هدایت کرد, وشکلهای گلابی واری را کشف کرد که بعدًا در کار سر ج.ه. داروین (فرزند چارلز داروین) نقش مهمی ایفاکردند.
پوانکاره, در خلاصة این کشفیات, می نویسد: « یک جسم سیال درحال دوران را که در اثر سرد شدنمنقبض می گردد درنظر می گیریم, ولی فرض می کنیم که این انقباض آنقدر آهسته صورت می گیرد کهجسم همگن باقی می ماند و دوران کلیة قسمتهای جسم یکسان است. شکل جسم که در ابتدا با تقریبزیادی کروی است به یک بیضوی دوار تبدیل می گردد که پهن تر و پهن تر می شود, آنگاه, در لحظةخاصی, به یک بیضوی با سه محور نابرابر تبدیل می شود سپس, جسم از صورت بیضی وار خارج و به گلابی
وار تبدیل می شود تا سرانجام جرم جسم, که در ناحیة کمر, بیشتر و بیشتر باریک می شود, به دو جسممجزا و نابرابر تجزیه می شود». این ایده ها در عصر خود ما بیشتر مورد توجه قرار گرفته است, زیرا اخیراًمتخصصین ژئوفیزیک به کمک اقمار مصنوعی دریافته اند که زمین خود اندکی گلابی شکل است.
بسیاری از مسائلی که پوانکاره در این دوره با آنها مواجه گردید بذرهای شیوه های جدید تفکر بودند, که درریاضیات قرن بیستم رشد کردند و شکوفا شدند. سریهای واگرا و معادلات دیفرانسیل غیرخطی را قب ً لا متذکرشده ایم. علاوه بر آنها, کوشش او برای درک ماهیت منحنیها و سطوح در فضاهایی با ابعاد بالاتر منجر بهمقالة مشهورش تحت عنوان تحلیل موضعی (توپولوژی) ( ۱۸۹۵ ) گردید, که همة افراد اهل فن متفقًا آن را
آغاز تاریخ نوین در توپولوژی جبری می دانند. همچنین, در مطالعة خود در زمینة مدارهای دوره ای, رشتةدینامیک توپولوژی (یا کیفی) را بنا نهاد. در اینجا نوعی مسئلة ریاضی مطرح می شود که نمایانگر آن, قضیهای است که پوانکاره در سال ۱۹۱۲ میلادی مطرح کرد, ولی عمرش کفاف نداد تا آن را ثابت کند: چنانچهتبدیلی یک به یک و پیوسته, حلقة محصور بین دو دایرة متحدالمرکز را چنان در خود تصویر کند کهمساحتها حفظ شود و نقاط دایرة دورانی را در جهت حرکت عقربه های ساعت و نقاط دایرة بیرونی را در
جهت خلاف حرکت عقربه های ساعت به حرکت درآورد, آنگاه, در این تبدیل حداقل دو نقطه باید ثابتبمانند. این قضیه کاربردهای مهمی در مسئلة کلاسیک سه جسم (و نیز در حرکت یک توپ بیلیارد بررویمیز بیلیارد محدب) دارد. در سال ۱۹۱۳ اثباتی برای این قضیه توسط یک ریاضیدان جوان آمریکایی به نامبیرکهوف یافته شد. کشف قابل ملاحضة دیگر پوانکاره در این زمینه, که امروزه به قضیة بازگشت پوانکارهمعروف است, به رفتار دراز مدت دستگاههای دینامیکی پایستار مربوط می شود. به نظر می رسید که این
نتیجه, بیهودگی کوششهای اخیر در به دست آوردن قانون دوم ترمودینامیک از مکانیک کلاسیک را نشانمی دهد, و مباحثة ناشی از آن مأخذ تاریخی نظریة ارگودیک نوین بوده است.
یکی از برجسته ترین خدمات فراوان پوانکاره به فیزیک ریاضی, مقالة مشهورش در سال ۱۹۰۶ دربارةدینامیک الکترون بود. او سالهای زیادی راجع به شالوده های فیزیک فکر کرده بود, و مستقل از اینشتینبسیاری از نتایج مربوط به نظریة نسبیت خاص را به دست آورده بود. فرق اساسی در این بود که بررسیاینشتین متکی بر ایده های مقدماتی مربوط به علامتهای نوری بود, حال آنکه بررسی پوانکاره بر پایة نظریةالکترومغناطیس بنا شده بود و بنابراین از نر کاربردی به پدیده های مربوط به این نظریه محدود بود. پوانکاره احترام زیادی برای استعداد اینشتین قایل بود, و در سال ۱۹۱۱ انتصاب اینشتسن را به اولین سمتدانشگاهی اش توصیه کرد.
در سال ۱۹۰۲ به عنوان یک سرگرمی جنبی, و ضمن کوششی برای سهیم کردن افراد غیر متخصص دراشتیاق خود به معنا و اهمیت انسانی ریاضیات و علوم, به نویسندگی و سخنرانی برای اقشار وسیعتری ازمردم روی آورد. این کارهای سبکتر او در چهار کتاب تحت عناوین علم و فریضه ( ۱۹۰۳ ), ارزش علم۱۹۰۴ ), علم و روش( ۱۹۰۸ ) و آخرین اندیشه ها( ۱۹۱۳ ) گردآوری شده اند. این کتابها واضح, لطیف, عمیق, )و رویهمرفته لذت بخش هستند, و نشان می دهند که پوانکاره یکی از بهترین نثر نویسان فرانسه است. درمشهورترین این مقالات, یعنی مقالة مربوط به کشف ریاضی, او به خویشتن نگریست و فرایندهای مغزی خودرا تحلیل کرد, و با انجام ان کار تصاویر نادری از مغز یک نابغه در هنگام کار را, عرضه کرد. همانطور که, ژوردن در سوگندنامة پوانکاره نوشت، « یکی از دلایل فراوان جاودانگی پوانکاره این است که با ما امکان دادتا در عین اینکه او را می ستاییم, وی را بشناسیم». گفته می شود که در حال حاضر دانش ریاضی هر ده سال یا در این حدود, دو برابر می شود, هر چند که عدهای راجع به تداوم این مقدار انباشتگی تردید دارند. عمومًا اعتقاد براین است که اکنون برای هر انسانی امکان
درک کامل بیش از یک یا دو شاخه از چهار شاخة اصلی ریاضیات, یعنی آنالیز, جبر, هندسه و نظریة اعداد,(بدون احتساب فیزیک ریاضی) وجود ندارد. پوانکاره تسلط خلاقی بر تمام ریاضیات زمان خود داشت, واحتمالاً پس از او هرگز کسی به این مقام نخواهد رسید.